“同时由于立体的结构,单键自然状态应该是109.5度左右——因为要支撑构体嘛。” “所以我在想……既然这个立体结构可以稳定,那么如果我们把其他的杂质都去除掉会怎么样?” “根据气体扩散定律,化合物的分解速率越高,且产物气体的平均相对分子质量越小,其爆速就越高。” “所以如果咱们能把化合物杂质去除掉只剩下氮簇……那么这种炸药的威力岂不是会更大一些?” 看着越说越意动的于永忠。 此时此刻,徐云的脑海中只有一排问号在起起伏伏: “??????” wdnmd哦! 老子听到了啥? 把化合物的杂质去除掉只剩下氮簇? 这tmd也能想到? 合着你们姓于的都是怪物是吧? 众所周知。 在徐云穿越来的2023年,cl20虽然号称亚核炸药,荣膺炸药圈四代目的头衔。 但在实验室领域中,它却并不是威力最大的一款炸药。 在非应用领域。 号称第五代炸药的新物质主要有三种: 一是基铌钛镁。 传闻这种物质多看一眼就会爆炸,靠近一点就会融化,主要结构是铝铈浛。 二是金属氢。 这玩意儿的原理是在超高压下,氢原子紧密结合在一起产生金属键,具有了金属特征。 理论上它是室温超导体,导电性能极好,也可做优质的火箭燃料。 2017年初。 哈佛大学的研究团队宣布通过对氢气施加495gpa的高压,首次制得固态金属氢。 但在同年的2月22日。 哈佛大学又宣称由于操作失误,盛放金属氢的金刚石容器发生了刚裂,这块金属氢样本就离奇的消失了。 截止到2023年。 金属氢依旧和某钓鱼佬的马甲似的,看起来好像很近,但实际上却难觅其踪。 而除了金属氢之外,第三种威力更强的炸药便是…… 全氮阴离子盐。 早先提及过。 所谓炸药。 靠的就是通过断开不稳定化学键并形成稳定的键来释放分子所储存的势能,进而对外做功。 而化学键键能如果细分,其实也就三类: 不稳定单键/双键的100~400kj/mol、 稳定的双键600~700 kj/mol、 以及氮氮三键942 kj/mol(n2)或碳氧三键1072 kj/mol(co)。 从量级上来说,其间的能量差别并不算大。 因此在cl20问世后。 想要获得跨数量级的威力,单纯通过化学能来解决是几乎不可能的。 于是呢。 化工界便把目标投放到了高能量密度材料上。 而含能纯氮物种,便是超高能量密度材料之一、 它包括氮簇(n4等)、高聚氮、纯氮阴离子/阳离子(n3-/n5+/n5-)等等。 因其产物主要为氮气,放能极高,且断开不稳定n-n键仅需要自由基均裂过程,反应速率通常很快,因此综合而言其做功功率也会很高。 当然了。 高密度和氧平衡较好的多唑类和氧杂唑类/呋咱类也具有极高的威力。 全氮阳离子盐的实体记录,最早可以追溯到1998年。 当时海对面国的空军研究实验室推进科学与先进概念部鼓捣出了这玩意儿,但由于稳定性问题一直没能脱产。 接着在2017年。 金陵理工大学合成了首个全氮阴离子盐,它的爆炸威力是tnt的十倍以上,比cl20还要高上三到四倍。 只是之前出于低调角度考虑,徐云并没有将m.boWucHINa.COm