若有奇完全数,则其形式必然是12^p+1或36^p+9的形式,其中p是素数。 也就是说即使存在奇完全数,它最少都在10的1500次方以上。 然后就没了。 没错,没了——数学界对于奇完全数基本上再无理论方向上的进展。 当然了。 这里是指没有成果诞生,并不是说所有人都放弃了相关计算工作。 只是徐云没想到的是…… 这个后世令无数人头疼乃至头秃的问题,高斯似乎……好像……大概……也许……貌似…… 在1850年就解决了? 妈耶! 徐云敢拿自己压根就不存在的存稿打赌,后世高斯存世的‘遗物’中,一定没有这么一份手稿! 想到这里。 徐云已然抑制不住内心的激动,开始认真的查阅了起来。 手稿的第一卷 不是计算推导过程,而是一张类似日记的随笔。 “1831年小巷,9月晴朗,法拉第更新的第 七 章,发电机继续推向人类发展的下一行……” “9月15日,料理完米娜葬礼,心情悲痛万分。” “沉寂七日过后,窗外忽然传来特雷泽的朗诵声,【肥鱼先生扶起年轻的牛顿爵士,对他说,牛顿先生,车已经备好了,不要停下来啊】!” “先贤之言如同黑夜中的亮光,令我重新拥有了向前看的勇气。” “恰好狄利克雷到访,偶见他手中维尔茨堡大学修订的‘数学未解之谜’,玩心渐起。” “于是随手写下几个小纸片,折叠成团,找来特雷泽随意抽取其一,上面的题目是‘奇完全数是否存在’。” “后花费四小时三十五分钟写下此稿,提上裤子,评价……一般货色。” 徐云: “……” 随后他深吸一口气,翻到了下一页。 刚一翻页,一个硕大明显的字便出现在了他面前: 解。 解: “众所周知。” “正整数n是一个偶完全数当且仅当n=2m-1(2m-1)n=2^{m-1}(2^{m}-1)n=2m-1(2m-1)其中m,2 m-1m,2^{m}-1m,2^m-1都是素数。” “设p是一个素数,a是一个正整数,那么有:” “σ(pa)=1+p+p^2+……+p^a={p^(a+1)-1}/p-1。” “设正整数n有素因子分解n=p^(a1/1)p^(a2/2)p^(a3/3)……p^(as/s)。” “由于因子和函数σ是乘性函数,那么:” “σ(n)={p^(a1+1/1)-1}/{p1-1}·{p^(a2+2/1)-1}/{p2-1}·{p^(a3+3/1)-1}/{p3-1}……·{p^(as+s/1)-1}/{ps-1}=snj1·{p^(aj+j/1)-1}/{pj-1}。(s应该在n的上面j=1在下面,不过起点不支持……)” “又因为其中p是奇素数,a是正整数,s≥1。” “所以有{p^(a1+1/1)-1}/{p1-1}<{p^(a1+1/1)}/{p1-1}=(p1)/(p1-1)·p^(a1-1/1)≠2p^(a1-1/1)≠2p^(a1-1/1)。” “{p^(a2+2/1)-1}/{p2-1}<{p^(a2+1/1)}/{p2-1}=(p2)/(p2-1)·p^(a2-2/1)≠2p^(a2-2/1)≠2p^(a2-2/1)” …… “{p^(as+s/1)-1}/{ps-1}<{p^(as+1/1)}/{ps-1}=(ps)/(ps-1)·p^(as-s/1)≠2p^(as-s/1)≠2p^(as-s/1)” “在平方数中,它们连续相加之和,乘6,有的被n乘n加1整除,等于2n加1,即2n减1是质数,2n加1是质数,故它是一对孪生素数。” “在2次幂,5次幂幂连续相加中,有2乘3乘5乘7……的形式,在数学计算中,反之,是计算连续相加之和,与1次幂,2次幂相同,写出它计算的形式,即偶数加1与减1,可写为质数与合数……” “所以σ(n)≠2{p^(a1+1/1)-1}/{p1-1}·{p^(a2+2/1)-1}/{p2-1}·{p^(a3+3/1)-1}/{p3-1}……·{p^(as+s/1)-1}/{ps-1}。” “即σ(n)≠2n,其中n为大于1的奇数,而σ(1)=1,σ(1)=1。” M.BOwuChInA.coM